
IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

National Conference on Emerging Trends in Engineering and Technology (NCETET’16)

Lourdes Matha College of Science & Technology, Thiruvananthapuram

Vol. 3, Special Issue 3, August 2016

Copyright to IARJSET DOI 10.17148/IARJSET 271

Object Oriented Paradigm for Programming

Finite Element Analysis

T.J. Raj Thilak
1
, P.V. Anil Kumar

2

Sci/Eng-SE, Structural Engineering Entity, VSSC, ISRO, Thiruvananthapuram, Kerala, India1

Sci/Eng-SG, Structural Engineering Entity, VSSC, ISRO, Thiruvananthapuram, Kerala, India2

Abstract: Finite element structural analysis program typically requires a huge amount of data to be managed and

number of lines of the code runs to millions. If the architecture of the program is not properly designed, even a small
change in the program will lead to a humungous task. Earlier procedural programming methods were used to code the

software which accesses global data in the entire program. This paper highlights the need of an object oriented

approach and its advantages for developing a finite element software.

Keywords: Finite Element Analysis; Object oriented programming; FEASTSMT©.

I. INTRODUCTION

Finite element method is an inevitable tool used

extensively for the analysis of structures to reduce the cost

of testing. A typical finite element programming involves

millions of lines to be coded. Most of the finite element
programs are written in FORTRAN, a procedural

programming language. The code contains a lot of data

structures that are declared in common block and are

usually accessed throughout the program. This global

access reduces the flexibility of the program and increases

the complexity in modifying the program. As the number

of lines in the code increases, new users will find difficulty

in introducing new modules and a small change in the

code needs a complete understanding of the entire code

[1]. Since a finite element program needs undergoes

continuous modifications to enhance its capabilities, it is
better to adopt object oriented methodologies that have the

following advantages [2]

 Huge amount of data can be handled in a secured

manner

 Data can be accessed and manipulated without

affecting the integrity

 Processes can be changed easily without affecting

other processes, even if change of data structure is

required

 New modules can be added with minimal effort

This paper deals with a new object oriented approach of

finite element software FEASTSMT© an in-house finite

element analysis software being developed by

VSSC/ISRO. The software is developed in C++ with
object oriented paradigm. To explain the architecture of

the program, element class has been taken as example and

elaborated. Similarly other classes can also be extended to

suit the requirement.

 To reduce the solution time, the solver uses sub-

structuring technique in the finite element domain coupled

with multi threading technique to attain system level

parallelisation.

II. PROGRAM ARCHITECTURE

The application of object-oriented design has proven to be

very beneficial to the development of flexible programs.

The basis of object-oriented design is abstraction. The

object-oriented philosophy abstracts out the essential

immutable qualities of the components of the finite

element method into classes of objects. Objects store both

their data, and the operators on the data that may be used

by other objects. This abstraction forms a stable class

definition in which the relationship between the objects is

explicitly defined. The implicit reliance on another
component’s data does not occur. Thus, the design can be

extended with minimal effort. The abstraction of data into

classes of objects limits the knowledge of the system

required to work on the code, to only the class of interest.

Encapsulating the data and the operations together isolates

the classes and promotes reuse of code. Changes to a class

affect only the class under consideration. There is no

ripple effect. Interdependencies between the classes are

explicitly laid out in the class interfaces and are easily

determined. The object-oriented languages inherently

ensure data integrity through restricted access
mechanisms. This modular architecture provides a flexible

and extensible set of objects that facilitate a faster

development without sacrificing the performance of the

program.

FEASTSMT© uses sub structuring techniques for its analysis

capabilities. Sub-structuring is a well-established method

in finite element technology. In this method the complete

structure is subdivided into number of substructures called

super elements. For each substructure the nodes are

distinguished as internal or external nodes according to the

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

National Conference on Emerging Trends in Engineering and Technology (NCETET’16)

Lourdes Matha College of Science & Technology, Thiruvananthapuram

Vol. 3, Special Issue 3, August 2016

Copyright to IARJSET DOI 10.17148/IARJSET 272

position of the node in the substructure. External nodes are

those common nodes at the interface between multiple

substructures as shown in Fig. 1. All other nodes in a

substructure are designated as internal nodes.

Fig. 1 Substructures and external nodes

After assembling the stiffness matrices for all the

substructures, the internal degrees of freedom are

condensed out and the stiffness matrix corresponding to the

external degree of freedom are assembled and solved for

external displacements. The external displacements are

used to calculate the internal displacements of each

substructure. Most of the computations associated with the

substructure, like, node renumbering, assembly, internal

variable evaluation etc. can be performed independent of

other substructures (Fig 2). The sub-structuring approach is

advantageous due to the following reasons:

1. It splits the work involved in the calculation

process into several independent and discrete packages

enabling parallel processing

2. Much of the work carried out for any given

substructure can be used again in later calculations.

3. It reduces the amount of memory required to solve

the model.

Fig. 2 Substructure based computational scheme

Multi threading is a kind of parallel processing that can be

used on single processor machines such as a typical

desktop, especially with a processor having multi-core

computing capabilities. The computations associated with

each substructure, as shown in fig.2 are assigned to

separate threads and the entire tasks can be carried out

without giving idle time for the processor, and it can be

used to increase the interactivity of the program. Since the

operating system assigns time slices to different activities
like computations of substructures and user operations, the

user can continuously interact with the program and the

substructure calculations are carried out in the background

of the program in different threads. Thus, multi threading

offers the advantage of carrying out the task very quickly

with greater interactivity.

III. DERIVATION OF ELEMENT STIFFNESS

MATRIX

A solid continuum is discretised into simple geometrical
domains known as elements, where the governing

differential equations are solved. The solution is sought at

specified discrete locations within the element extent,

known as nodes, in most cases they are at the element

boundaries. The discrete solutions from various nodes of

the element are used for interpolating the dependent

variable at any arbitrary location within the element. In this

section, a general description of the displacement method is

given [3]. Principle of minimum potential energy states

that “Of all possible displacement states a body can assume

that satisfy compatibility and specified kinematic

conditions, the state that satisfies the equilibrium equations
makes the potential energy assume a minimum value”.

For a linearly elastic body with conservative loads, the

expression for potential energy is

 U (1)

Where, U is the strain-energy and Ω is potential of all

external loads. Since the strain energy depends on the strain

and stress state of the system in turn it depends on the

degree of freedom of the system. Thus the potential energy

is a function of the degrees of freedom qi. Using principle

of stationary potential energy, where equilibrium prevails

when 0d  , is expressed as

n,....2,1ifor0
q i





 (2)

Utilizing equation (2), n equations solved for obtaining

values of degrees of freedom. The general form of equation

(1) is

             

          Pqdsudvu

dvDD
2

1

T

S

T

V

T

V

0

T

0

TT
















 (3)

External Nodes
Sub2 Sub1

Sub3 Sub4

External matrix assembly

Solution

Node renumbering
Element matrix computation

Assembly
Application of constraints

Decomposing
Elimination of internal variables

Internal variable evaluation
Secondary variables

evaluation

Node renumbering
Element matrix

computation
Assembly

Application of constraints
Decomposing

Elimination of internal
variables

Internal variable evaluation
Secondary variables

evaluation

Node renumbering

Element matrix computation

Assembly Application of
constraints decomposing

Elimination of internal variables

Internal variable evaluation

Secondary variables evaluation

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

National Conference on Emerging Trends in Engineering and Technology (NCETET’16)

Lourdes Matha College of Science & Technology, Thiruvananthapuram

Vol. 3, Special Issue 3, August 2016

Copyright to IARJSET DOI 10.17148/IARJSET 273

The terms in (3) corresponds to the strain energy stored in

the system and work done by the body forces Γ, surface

tractions Φ and point load P respectively on the system. ε is

the strain , σ is the stress, D is the elasticity matrix, ε o is the

initial strain and σo is the initial stress. By using the

constitutive equation and strain displacement relation and

applying (2) we will get the standard form of finite element

equation as below

    FqK  (4)

where,

      

              

    PdvB

dvDBdsNdvNF

dvBDBK

V

0

T

V

0

T

S

T

V

T

V

T













where, B is the strain displacement relation and N is the

shape function used to interpolate the field variables

anywhere within the element in terms of nodal field
variables.

IV. PROGRAMMING ELEMENT STIFFNESS

MATRIX

In the previous section a general derivation of the element

stiffness matrix is derived independent of element type. In

a procedural programming, the element stiffness matrix

has to be coded for each and every element type,

increasing the number of lines and thus increasing the

complexity of the code. In an object oriented approach,

features like encapsulation, inheritance, polymorphism etc.
are used to concisely write the code. In the present

software, a base class CElement is written which contains

the general framework of the element. The main purpose

of this class is to serve the basic common services, which

are common to all finite elements (like storing the

references to element's material model and physical

attributes, nodes, etc.). The derived classes (direct children

of Element class) are assumed to provide general services

required for a specific analysis purpose ­ like evaluation of

stiffness, geometric stiffness and mass matrices for

structural analysis, or evaluation of capacity and
conductivity matrices for heat transfer analysis. The

common operations are handled by classes at the higher

levels in the hierarchy.

Those operations dependant on the dimension of elements,

like numerical integration and shape function evaluation

etc., are handled in CElement1d, CElement2d or

CElement3d. The class diagram for the elements module

of FEAST
SMT©

program is as shown in Fig.3. Fig.4 shows

a function for calculating the stiffness matrix. The

functions to be overridden are shown in bold.

For defining a new element type, derive it from a class

already in the hierarchy and add the missing

functionalities or override the existing functionality

respecting the interface. Some important code segments in

the case of defining an axisymmetric solid of revolution

element is described below. The class

CAxisymmetricElement has to be derived from

CElement2d in order to utilise the functions defined in that

class. Axisymmetric element reuses the services provided
by CElement for computation of stiffness matrix.

Fig. 3 Class diagram for introducing a new element type

An element derived from CElement is assumed to provide

the following services if the implementation already

provided in its class hierarchy is not acceptable.

Fig. 4 Function to calculate Stiffness Matrix

 GetGaussPoints – Returns a list of Gauss Integration

points (containing Guass absissae and weights) depending

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

National Conference on Emerging Trends in Engineering and Technology (NCETET’16)

Lourdes Matha College of Science & Technology, Thiruvananthapuram

Vol. 3, Special Issue 3, August 2016

Copyright to IARJSET DOI 10.17148/IARJSET 274

on integration rule. This function is implemented in

CELement2D class.

 ComputeBMatrix – Computes strain-displacement

matrix. This function is implemented in the respective

element type classes.

 GetMaterialMatrixAt – Obtain the material

constitutive matrix as provided by the referenced material.
This function is implemented in the CMaterial class.

Depending on the material type and element type,

CElement class will take the constitutive matrix.

In order to reuse the service for stiffness-matrix

computation CAxisymmetricElement has only to provide

ComputeBMatrix function that depends on its strain

displacement relation.

V. RESULTS AND DISCUSSION

To show the efficiency of the substructuring and

multithreaded architecture, a pressure vessel as shown in

Fig.5 is modeled with 4 node shell element. The model is

executed in a personal computer having 3GB RAM and

the execution time is shown in Table 1. The number of

degree of freedoms and elements in the model are

respectively 173508 and 28800. Any new element to be

added has to over ride certain functions that are already

coded in CElement class.

Fig. 5 Pressure vessel discretised with 4 node shell

element

Table 1 Computational Timings for different number of
substructures

No. of Substructures Solution Time (Sec.)

4 158.94

6 63.83

8 70.89

12 58.1

ACKNOWLEDGMENT

The author would like to acknowledge Dr. T.

Sundararajan, Head, SMSD, Shri. P. Balachandran,

GD, SDMG, and Dr. S. Unnikrishnan Nair, DD, VSSC

(STR) for providing necessary support in the development

of the software and team FEAST for writing this

manuscript.

REFERENCES

[1] G.C.Archer, G.Fenves, C. Thewalt, " A new object-oriented finite

element analysis program architecture," Computers and Structures,

vol.70, pp.63-75, 1999.

[2] P.V.Anil Kumar, T.J.Raj Thilak, Dr.B.Sivasubramonian, Shri.

K.L.Handoo, " Development of an Object -Oriented Pre and Post

Processing Software for Finite Element Analysis of Structures",

ICCAE 2007, 2007.

[3] Robert D.Cook, David S.Malkus, Michael E. Plesha, Robert J. Witt,

" Concepts and Applications of Finite Elemet Analysis - Fourth

edition", Wiley India (P.) Ltd.

